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ABSTRACT: NKT cells, a unique subset of T cells that recognizes glycolipid
antigens presented by CD1d molecules, are believed to produce key cytokines of both
Th1 and Th2 T cells and are thus involved in the control of several types of immune
response. As an active glycolipid antigen having α-galactosyl ceramide core structure,
KRN7000 showed promising immunostimulation activity and was selected as an
anticancer drug candidate for further clinical application. In this report, three new
KRN7000 structural analogues were designed and synthesized, in which the ring oxygen of the galactopyranose residue is
replaced by a sulfur atom along with the variation on the lipid chain. Their abilities for stimulating mouse NKT cells to produce
IFN-γ and IL-4 were evaluated both in vivo and in vitro.
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Invariant natural killer T (iNKT) cells are a specialized subset
of T cells that play an important role in tumor immunity and

preventing autoimmunity.1−4 The anti-infective activity of
iNKT cells can be triggered by various viruses, bacteria, and
parasites.5,6 When stimulated by glycolipid antigens such as
marine natural product agelasphin-9b,7 the iNKT cells could
rapidly release T helper 1 (Th1) cytokines (e.g., IFN-γ, TNF-α,
IF-2) and Th2 cytokines (e.g., IL-4, IL-10).8,9 Th1-biased
cytokines are believed to be concerned with the antitumor,
antibacterial, and antiviral activities, whereas the release of Th2-
biased cytokines may relieve some autoimmune diseases.10−12

KRN7000 (1),13 a synthetic α-GalCer (1, Figure 1) derived
from the structural modification on the ceramide part of
agelasphin-9b, presented convincing effects on the treatment of
liver tumors,14,15 metastatic cancers,16,17 parasitic infec-
tions,11,18 and autoimmune diseases.19,20 The action mecha-
nism of KRN7000 has been suggested in approximately three
sequential steps. First, KRN7000 is combined with the CD1d

protein to form a glycolipid−protein complex. Second, the
KRN7000/CD1d complex is recognized by the T cell receptor
(TCR) on the surface of NKT cells to form a three-molecule
complex. Lastly, it stimulates NKT cells to release Th1 and Th2
cytokines rapidly.21 Because of the mutual repulsion of Th1 and
Th2 cytokines, the simultaneous high level production of both
cytokines weaken the therapeutic effectiveness of KRN7000.22

Therefore, some KRN7000 derivatives modifying on either
sugar or ceramide moieties were synthesized and expected to
selectively control the release of Th1 and Th2 cytokines.23−27

For example, KRN7000 analogue with a longer acyl tail (2,
Figure 1) exhibited a greater ability for activation of B cells and
induced IL-2 from mouse NKT cells, and IL-4 and IFN-γ from
human Vα24i NKT cells in vitro,28,29 while the analogue with a
relative shorter chain (3, Figure 1) influenced cytokine release
toward Th2 bias with an immunomodulatory response.30 In
consideration of the intrinsic instability of O-glycosides in vivo,
both C-bridged glycoside (α-C-GalCer)31−33 and S-bridged
glycoside (α-S-GalCer),34−36 with the replacement of the
anomeric oxygen by methylene or sulfur atom, respectively,
were prepared to examine their biological activities. Comparing
to the O-glycoside KRN7000, α-C-GalCer showed a stronger
Th1 response in vivo, whereas the analogue α-S-GalCer did not
activate the murine iNKT cells both in vitro and in vivo, but
stimulated human iNKT cells in vitro.36

Literature search revealed that very few examples have been
found for carbohydrates having the ring sulfur structure in
natural products,37 one interesting report is the 5-thio-D-
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Figure 1. Structures of KRN7000 (1) and its active analogues 2 and 3.
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mannopyranose isolated from metabolites of the marine sponge
Clathria pyramida (Lendenfled) with antimicrobial activity.38 In
a molecular modeling study, the carbon−sulfur bond is
proposed to be more soft with regard to absorb the deviations
of bond lengths and bond angles between ethers and thioethers,
thereby minimizing structural changes of carbohydrate
moieties.39 Some synthetic oligosaccharides, containing 5-
thio-pyranosyl residue, show good inhibitory activities against
exoglycosidases,40−43 as represented by a synthetic 5-thio-L-
fucopyranosyl disaccharide with inhibition activity on bovine
epididymis α-L-fucosidase.44 Therefore, it is possible to create
bioactive oligosaccharides with remarkable alterations of
physicochemical characteristics and biological activities37

using ring-S instead of ring-O sugar unit. Accordingly, we
designed 5-S-KRN7000 (4, Figure 2), in which the α-

galactopyranosyl moiety of KRN7000 (1) is replaced by a 5-
thio-galactopyranose residue, expecting to develop a new
antitumor agent that would induce the release of cytokines
selectively. We also synthesized compounds 5 and 6 (Figure 2)
with varied lipid tails to explore the preliminary relationship
between the efficacy of the cytokine release and the chemical
structures.
We started from the synthesis of lipid part of glycosyl

acceptor 12 (Scheme 1). Commercially available phytosphin-
gosine (7) was condensed45 with N-hydroxysuccinimide ester
(8a or 8b) or octanoyl chloride (8c) in the presence of Et3N in
THF to afford the crude amide 9, which was treated with
triphenylchloromethane (TrCl) in pyridine to give tritylated
derivative 10. The remaining two hydroxyl groups of 10 were
further blocked with benzoyl chloride in pyridine generating
compound 11, which was subjected to the detritylation with p-
toluenesulfonic acid in methanol/CH2Cl2 and achieved accept-
or 12 in good yield.
The synthetic route toward 5-thio-galactopyranosyl donor 15

is depicted in Scheme 2. Taking advantages of our recently
reported method, 1,2,3,4,6-penta-O-acetyl-5-thio-D-galactopyr-
anose (13)46 was selected as the starting material. Removal of
the anomeric acetate of 13 with benzylamine47 in THF afforded
the hemiacetal 14, which was transformed into trichloroaceti-
midate 15 with CCl3CN and DBU in a yield of 51% for two
steps.
With donor 15 and acceptor 12 in hand, the coupling

reaction was investigated as shown in Scheme 3. It was found
that the glycosylation of 5-thio-galactopyranosyl donor 15 with
lipid acceptors 12b and 12c furnished glycosides 16b and 16c
in good yields in the presence of a catalytic amount of
TMSOTf (0.05 equiv) in CH2Cl2 at −40 °C. However, the
glycoside 16a was afforded only in 35% isolated yield under

optimized reaction conditions, ascribed to the poor solubility of
12a in CH2Cl2 at low temperature (0−40 °C). Several

Figure 2. 5-S-Substituted KRN7000 analogues 4, 5, and 6.

Scheme 1. Synthesis of the Acceptor 12a

aReagents and conditions: (a) compounds 8a or 8b, Et3N, THF, 50
°C; (b) 8c, Et3N, THF, 0 °C; (c) TrCl, DMAP, Pyr, 80 °C, 80% for
10a, 83% for 10b, 84% for 10c (over 2 steps); (d) BzCl, DMAP, Pyr,
rt, 95% for 11a, 89% for 11b, 88% for 11c; (e) TsOH, CH2Cl2/
MeOH, rt, 88% for 12a, 85% for 12b, 85% for 12c.

Scheme 2. Synthesis of the Donor 15a

aReagents and conditions: (a) benzylamine, THF, rt, 62%; (b)
CCl3CN, DBU, CH2Cl2, rt, 82%.

Scheme 3. Synthesis of KRN7000 Analoguesa

aReagents and conditions: (a) 12, TMSOTf, CH2Cl2; for 16a, 0 °C,
35%; for 16b, −40 °C, 59%; for 16c, −40 °C, 47%; (b) NaOMe,
MeOH, rt, quantitative.
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researchers have reported extensive efforts directed at
glycosylation reactions with 5-thiopyranosyl donors. It seemed
that, from these examples, both the yields and the stereo-
selectivity of the reactions were dependent on the glycosyl
acceptor.40−43 We were very glad that the glycosyl ceramides
16a−c were prepared as the unique α-linked products
stereoselectively, as well as the recovered acceptors. No β-
isomers were isolated in any attempted efforts in our case.
Global deacylation of 16a−c was conducted smoothly with
methanolic NaOMe to obtain KRN7000 analogues 4, 5, and 6
all in quantitative yields.
The abilities of KRN7000 and its 5-thio analogues 4, 5, and 6

in stimulating the cytokine production of NKT cells were
investigated under designed in vitro and in vivo conditions. First,
we measured the serum levels of IFN-γ and IL-4 after
intraperitoneal (i.p.) injection of the glycolipids into B6 mice
at several time points (Figure 3a,b). Consistent with previous

studies,12,48 KRN7000 (1) injection resulted in a rapid
production of IL-4 peaked at 3 h and a delayed but extended
elevation of IFN-γ (continuously released at high concen-
trations from 6 to 24 h) in B6 mice. Compared with KRN7000
(1), 5-thio-KRN7000 (4) presented a similar tendency and
ability to induce the release of key immunomediators IFN-γ
and IL-4 in mice. Analogue 5-thio-α-GalCer 566 (5) induced a
slightly decreased production of IFN-γ compared to 1 and 4,
while 5-Thio-PBS-25 (6) had a low stimulation as shown in
Figure 3a. One thing to note is that injection of 5 greatly

reduced the production of IL-4; however, the production of
IFN-γ still remained relatively high. Therefore, S-analogue 5
may be used specifically for inducing iNKT cells to produce
Th1 cytokines. As shown in Figure 3b, all three 5-thio
analogues of KRN7000 could stimulate IFN-γ and IL-4
production in vivo, and the productivities were increased with
the length of the acyl tail. After 24 h, the production of IFN-γ
induced by 5-thio-KRN7000 (4) remained high (1722 ± pg/
mL), as compared to the level of IFN-γ induced by KRN7000
(2127 ± pg/mL). The induced production of IL-4 by the three
analogues was rapidly ceased by 12 h.
As shown in Figure 3a,b, IFN-γ was measured in the serum of

glycolipid antigen-treated mice; however, the level of IFN-γ
secretion might be affected by other types of cells interacting
with iNKT cells after iNKT cells were activated in vivo. To
directly compare the ability of KRN7000 and its 5-thio
analogues in stimulating the cytokine production of NKT
cells, KRN7000 and compounds 4, 5, and 6 were examined to
stimulate NKT cells in vitro. As shown in Figure 3c, all synthetic
samples could activate iNKT cells to produce IFN-γ in vitro. In
particular, 5-thio-KRN7000 (4), as well as 5-thio-α-GalCer 566
(5), stimulated higher IFN-γ production of iNKT cells than
that of KRN7000. About 8.5% iNKT cells produced IFN-γ after
the stimulation with 4, which was comparable to that of PMA-I
stimulation.49 Only 5-Thio-PBS-25 (6) stimulated iNKT cell
activation at a lower level. Thus, all three KRN7000 analogues
induced iNKT cells in vitro to release Th1 cytokines, but the
activating abilities of 5-thio-KRN7000 (4) and 5-thio-α-GalCer
566 (5) were more potent.
In summary, we have successfully prepared three KRN7000

S-sugar analogues with acceptable total yields applying
stereoselective α-glycosylation of 5-S-galactopyranosyl trichlor-
oacetimidate and phytosphingosine derivatives. The abilities of
KRN7000 and its 5-thio analogues 4, 5, and 6 to stimulate the
cytokine production of NKT cells were investigated both in
vitro and in vivo. In vitro testing of 5-thio-KRN7000 (4) and 5-
thio-α-GalCer 566 (5) stimulated higher IFN-γ production of
iNKT cells than that of KRN7000. Compared to KRN7000
(1), S-analogue 4 presented a similar tendency and ability to
induce the release of key immunomediators IFN-γ and IL-4 in
mice. It is quite interesting to note that the S-analogue 5 could
compress the production of IL-4 in the presence of relatively
high IFN-γ production. Therefore, 5 may be useful in specific
inducing iNKT cells to produce Th1 cytokines. This biological
data paves the way for developing new potent immunostimulat-
ing agents. Studies on deeper exploration of the three 5-thio
analogues and the synthesis of other 5-thio-α-GalCers
containing modified ceramide moiety are under investigation
in our laboratory.
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Figure 3. Bioassay of KRN7000 and its analogues in vivo and in vitro.
(a,b) Cytokine secretion in vivo after injection of KRN7000 or its
analogues (100 μg/kg). Every group contains two mice and their
serum of indicated times were detected individually. (c) IFN-γ
secretion by mouse splenocytes in vitro. For control, splenocytes were
only incubated in complete 1640 medium. PMA (Phorbol 12-
myristate 13-acetate)-I (ionomycin) were added to the cells as a
positive control. The cells were gated on CD3+DX5+CD1d tetramer+

NKT cells.
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